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The method of collocation using two fmite element techniques is applied to the solution 
of the general population balance equation for particulate systems. Numerical solutions 
by both techniques are obtained in six cases for which analytical or asymptotic solutions 
are available. Errors associated with solving the equation on a tinite particle sire domain 
are analyzed. The results indicate that, for simulating particulate system dynamics, both 
techniques are highly accurate and efficient. 

1. INTRODUCTION 

The state of a spatially and chemically homogeneous particulate system is described 
by its size distribution density function, n,(v, t), where n,(u, t) dv is the number of 
particles per unit volume of fluid having volumes in the range u to v + dv. The 
dynamics of such a system in which individual particles may grow through accretion 
of material from the fluid phase (or shrink by loss of material) and in which particles 
may collide and coagulate are described by the general particulate balance equation 
P, 21 

%l(u, t) -= 
at 

6, 6) n,(u - d, t) n,(d, t) d6 

- n,(u, 0 Irn Mu, 5) ndv”, t> dfj 
0 

+ &b&, f>, z’, fl (1) 

where I&, t) = dv/dt, the rate of change of the volume of a particle of volume v by 
transfer of material between the particle and the fluid phase, /I&J, 6) is the coagulation 
coefficient for particles of volumes u and 5, and S, is the net rate of addition of fresh 
particles into the system. The initial and boundary conditions required for (1) are 
generally stated as 

no(t~, 0) = nvJo(U) (2) 
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and 

%io, t> = 0, (3) 

respectively. (The latter condition indicates that there are no particles of zero size.) 
The first term on the right-hand side of (1) represents the rate of growth of particles 

by transfer of material to individual particles. The second term represents the rate of 
accumulation of particles in the size range (0, v + dv) by collision of two particles of 
volumes u - B and B to form a particle of volume 21 (assuming conservation of volume 
during coagulation). The third term represents the rate of loss of particles in the size 
range (0, u + du) by collision with all other particles. The last term represents all 
particle sources and sinks. Equation (1) arises in a wide variety of physical contexts, 
such as colloid chemistry, atmospheric aerosol dynamics, crystallization kinetics, and 
biological population dynamics. 

Equation (1) can also be written in terms of particle diameter D (assuming spherical 
particles), 

an&A 0 a K&T t) ndD, t)l at = - ao 

+ D2 joD’2”3~D(~, d) nD(#, 0 h@, t) $ 

- MA t) jm POP, @ R@, 0 dD 
0 

+ S&&A t), D, t3 (4) 

where nD(D, t) = (7~D~/2)n,(v, t), # = (D3 - @)1/3, and ID = dD/dt. 
In spite of the great importance of (1) and (4) to particulate system dynamics, 

solutions have been difficult to obtain. Analytical solutions are available only for a 
few simple forms of the initial conditions, flV(v, fi), lu(u, t), and S,[n(u, t), U, t] [2-51. 
Numerical solutions have been reported [6-161 but the optimum method for solving 
(1) has not been determined. 

In this work we report on two collocation techniques used to solve the general 
dynamic equation. In Section 2 we discuss the proper scaling of the equation, in 
Section 3 we develop both methods, and in Section 4 we describe the results of 
applying both methods to several test problems for which analytical or asymptotic 
solutions are available. 

2. SCALING OF THE EQUATIONS 

Equations (1) and (4) must be resealed to a finite domain prior to numerical 
solution. We select a dimensionless finite particle size domain scaled from zero to one. 
Let us denote v, , ub, and D, , Db as the chosen lower and upper limits on the volume 
and diameter, respectively, that will be employed in the numerical solution. Two 
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possible transformations to a finite particle size domain (Da, DJ are linear and 
logarithmic [13], 

u = (D - Da)/(Db - 0,) or 

and 

For the representation of real systems, the logarithmic transformation (6) is 
preferred over the linear transformation (5). Generally, the larger number of particles 
occur in the smallest size range, and (6) more effectively expands that region. If 
significant effects occur equally over the entire particle size range, then a linear 
transformation (5) is preferred. The use of a finite particle size domain introduces 
errors in that the general dynamic equation is based on an infinite particle size domain. 
For an actual particulate system, however, there are usually upper and lower bounds 
on the sizes of the particles that exist. In theory, D, should be chosen as the diameter 
of the smallest existing particle. (Although the general equations are written as if 
there exists a continuous spectrum of sizes down to zero, there is actually a lower 
cutoff in a real system.) Db should be chosen large enough to include nearly all the 
particles in the system, yet small enough so that the region of major dynamic activity 
is not obscured. We will discuss the choice of D, and Db subsequently. 

The analytical solutions of (1) currently available are based on rather idealized 
forms of the initial conditions, /3, , 1, , and S, [2-51. For that reason, these solutions 
do not correspond directly to realistic physical conditions. Nevertheless, the use of 
available analytical solutions represents the only unambiguous way to ascertain the 
accuracy of the numerical solutions. Thus, in this work we will concentrate on obtain- 
ing numerical solutions for those cases for which analytical solutions are available. 

Since aerosol data are usually given in terms of particle diameter, and the logarithmic 
transformation (6) has the same form for either particle volume or diameter, we 
choose to develop the numerical solution in terms of particle diameter. 

Using (6), (4) becomes 

am@, 0 -= 
at - & [W, t> m(w, 01 

- m(w, t> l1 B(w, z) m(z, 0 dz + S[m(w, 0, w, tl (7) 

where I = dwldt and 

x = ln(53w - C3”)/3 In 5, 

5 = Dal& 3 
(8) 
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and 
m(w, r) = D In @r#, t), 

S = D,c” In CS, . 

From (9), we can relate m(w, t) and n,(u, t) as follows: 

n,(o, r) = (2/T In CoS)m(w, t). 

(9) 
(10) 

(11) 

3. COLLOCATION ON FINITE ELEMENTS 

The most promising class of methods for solving (7) is that based on the methods of 
weighted residuals, in which the form of the solution is assumed in terms of a complete 
set of functions (generally polynomials) and substituted into the governing equation 
[17, 181. To produce equations for the unknown coefficients of the expansion, the 
equation is multiplied by a weight factor, which is dependent on the method used, and 
integrated over the domain of interest. Among all the commonly used methods of 
weighted residuals, such as collocation, the Gale&in method and the method of 
moments, only collocation does not require extensive integral evaluations. Therefore, 
collocation emerges as the most attractive method of weighted residuals for (7). 

In the traditional application of collocation a finite expansion of order n is forced 
to satisfy the differential equation at M + 1 predetermined collocation points, hence 
the residual is zero at these points. If the expansion satisfies the differential equation 
at all points in the region and at the boundary, then the expansion is by definition a 
representation of the exact solution. However, due to the large variations in magnitude 
of M(W, t) a single high-order polynomial fit is not feasible. Therefore the finite 
element technique combined with collocation [ 19, 201 represents a promising approach. 

For both finite element techniques the domain of the independent variable is 
divided into elements within which the dependent variable is represented by a poly- 
nomial, often a cubic. At the grid points between elements the distributions and their 
derivatives are forced to be continuous. If the second derivative is forced to be 
continuous and collocation points are also taken at the grid points, then the finite 
element fit is actually a cubic spline. If within each element the independent variable 
is resealed from 0 to 1 to avoid roundoff errors, and collocation points are taken as 
the roots of the shifted Legendre polynomial, then we have what has been called 
orthogonal collocation on finite elements [20]. Since cubic splines are described in the 
literature [21, 223, and they were originally reported in [16] only orthogonal colloca- 
tion on finite elements will be described here. Because it is easier to write the code in 
terms of the distribution at the collocation points and not the expansion coefficients, 
the solution technique will be given in terms of the distribution at the collocation 
points. 

Dividing the distribution, m(w, t) into M elements and using a cubic polynomial 
in each element results in the following representation of m(w, t) in the ith element, 

i = 1, 2 ,..., M, (12) 
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where A<,j is the jth coefficient of the ith element, and yi = (w - wi-J/(wt - ~~-3 
for wi-1 < w < w, . Imposing the condition of continuity of m(w, t) and its first 
derivative at the grid points gives 

Ai, + 2Ai,, + 3Ai,, = ;;++ Wi-l)Ai+~.a. - w) 

At each collocation point ?J within each element we have 

and where Bi,k represents the distribution, m(w, t) at the kth collocation point in the 
ith element and w = q(wi - wi-J + wi-1. Using (13) and (14) we can derive the 
following set of 2h4 + 2 linear algebraic equations for A+,j 

(1 - 3r]k2 + 2Tk3) Ai. + (qk - 2r]k2 $ qk3) 42 $ c37k2 - 2qk”) &+M 

‘,c;:,+$ hk3 - r)k2) &+~a = Bi.k > i = 2,..., M- 1, k = 1,2, 

i = 1, k = 1,2,3; (16) 
and 

A M,I + ‘du,, + qk2-4nr,3 + ‘lk3A.uM.4 = &u,, , k = 1, 2, 3. (17) 

When placed in conventional matrix form, (16) and (17) lead to a banded matrix of 
bandwidth 7 that can be inverted easily. Since the elements of the matrix are time 
independent, elimination need only be carried out once. 

The final consideration is the location of the finite elements. In [20] it is suggested 
that the elements be located to minimize the residual. Although this is a reasonable 
criterion, it would require a costly iterative procedure in the present application. 
Without any prior knowledge of the behavior of IIZ(W, t), the elements were equally 
spaced in w, or in terms of a dimensionless diameter. 

4. NUMERICAL IMPLEMENTATION 

We will consider the exponential initial volume distribution 

%&V> = w%) e-e (18) 

where N,, is the total initial number of particles, Y,, is the mean initial volume, and 
5 = v/v0 . 

Because the mechanism of coagulation poses the greatest numerical difficulty, we 
will first consider the solution of (7) in the absence of growth and sources. In this case 
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we will show the effect of using a finite particle size domain by studying two different 
collision mechanisms, /3u = /IO and p, = flI(v + 6). As mentioned previously, in 
actual particulate systems an upper limit to the particle size exists because of removal 
mechanisms, such as sedimentation or deposition. Therefore, the effects on the 

TABLE I 

Summary of Cases Considered of the General Dynamic Equation for Particulate Systems” 

an, -= 
at - ; (Z&) + ,y /k?“(U - 6, d)n,(u - 6, t)n,@, t) & 

- n,(v, t) s m /%(u, i+z(C, t) de + S”(?z, , v, t) 0 

Case Mu, 3 uv, t) S”b” , 0, t) 
Analytical Domain 
solutions [cl ,41 

1 Bo 0 0 141 [1O--8, 271 

2 A 0 0 t41 [10-B, 641 

3 Bdv + 9 0 0 13941 [lo-+, 271 

4 Bdv + 3 0 -RI% 151 [10-O, 271 

5 t% av 0 PI [10-O, 271 

6 I% 0 (S@‘~“*/u*) - Ron, PI [10-O, 271 

t R. , So , and o are constant. 

TABLE II 

Dimensionless Groups Associated with the General Dynamic Equation for Particulate Systems 

Group Interpretation 

7 = N#& (Cases 1, 2, 5, 6) Dimensionless time 

= N,v,/3,t (Casea 3, 4) 

A = u/No/3, (Case 5) 
Condensation rate 
Coagulation rate 

8 = R,/Nov& (Case 4) 

= Ro/No~o G-e 6) 

9 = So/N,,a~o (Case 6) 

Removal rate 
Coagulation rate 

Source rate 
Coagulation rate 
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distribution of a first-order removal mechanism will be studied. Then, the effect of 
simultaneous coagulation and growth will be studied. Finally, the numerical solution 
will be compared to an asymptotic solution for a system undergoing simultaneous 
coagulation and removal with a constant particle source. The cases considered are 
summarized in Table I. 

Particulate size distributions can be represented in a variety of ways. When the 
predominant number of particles occurs in the small size regime, we select a represen- 
tation that expands the lower end of the spectrum. In such a case the distribution is 
usually represented versus a logarithmic size coordinate, e.g., (6). When representing 
the analytical solutions to the cases listed in Table I, however, it is most convenient 
to use, as the independent variable, B and, as the dependent variable, tia(D, t)/N,, , 
where D = D/D,, D, = (6~,,/7+/~, and Eb(B, t) = D,,no(D, t). 

All solutions will be expressed in terms of dimensionless groups, defined for each 
case in Table II. Since all cases include coagulation, other mechanisms such as 
growth, removal, and sources will be expressed in terms of dimensionless groups 
scaled to coagulation. Although the definition of the dimensionless time 7 varies 
depending on the coagulation mechanisms, for comparison purposes the same values 
of T will be used in each case for which we present solutions. For convenience (1, 8, 
and Q will always be assumed to be unity. All analytical solutions will be shown as 
solid lines, and all numerical solutions will be represented by discrete points. Since 
both finite element techniques gave similar results both techniques are implied when 
numerical solutions are reported. The analytical solutions are given in Table III. 

TABLE III 

Analytical Solutions to (1) for Initial Distribution (18) 

Case 8” Rsv, d Reference 

[41 

3” Mu + 6) 0 0 
Ndl - T) 

v T’l” 
exp( - (1 + T)zs) z,(Zzs TIP) [3,41 

- Ronv exp (-(1 + g)8)Z,(2g11e6) PI 

4N 
( 

26 
exp - - exp(-AT) - AT 

%(T + 2y 7+2 1 PI 

o T = 1 - e-I, Z1, is the modified Bessel function of the first kind of order one. 
b g(T) = 1 - exp((T - 1)/O), p = exp( -07). 
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4.1. Finite Domain Error 

A major consideration in numerically solving an equation described over an inCnite 
domain is the error incurred by the solution on a finite domain. To evaluate this so- 
called “finite-domain error,” the fractions of the total number and volume of particles 

TABLE V 

Finite Domain Errors for Cases l-5 

3.0 

5.0 

7.0 

10.0 

20.0 

5.0 1.00 1.00 

10.0 1.00 1.00 

20.0 0.997 0.980 

30.0 0.982 0.908 

50.0 0.915 0.705 

0.5 0.999 0.988 

1.0 0.983 0.776 

1.5 0.950 0.483 

2.0 0.921 0.283 

3.0 0.887 0.0979 

1.0 0.998 0.959 

2.0 0.990 0.856 

3.0 0.986 0.806 

5.0 0.983 0.780 

7.0 0.983 0.776 

10.0 0.983 0.776 

1.0 0.999 0.990 

1.5 0.968 0.858 

2.0 0.839 0.545 

2.5 0.627 0.259 

3.0 0.416 0.102 

1.00 1.00 

1.00 1.00 

1.00 0.996 

0.998 0.983 

0.989 0.939 

0.914 0.703 
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contained in the finite computational domain can be determined based on the analytical 
solutions. Thus, 

represent these two fractions. Obviously, we desire to select o, and vb such that M,, 
and MI do not differ appreciably from unity but not so close to 0 and co, respectively, 
that the computational requirements are excessive. Due to the processes of coagulation 
and particle growth, larger particles are continually being formed. Thus, by using 
any finite domain, AI,, and MI must eventually decrease from unity. The time for 

1.5 

0 1 2 3 

zi5 
FIG. 1. Particle size spectra. j3” = PO and 7 = N&t. 
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which M, and iW1 differ significantly from unity can be delayed by extending the 
domain at the expense of increased computational requirements. 

It is important to note that (19) and (20) are evaluated based on the exact solution 
and therefore represent only the theoretical errors commited through the use of a 
finite computational domain. It is also important to distinguish the finite domain 
errors from errors usually associated with numerical solutions, in that regardless of 
the numerical method or its accuracy, there will be an error incurred merely because 
the computation is carried out on a finite rather than an infinite domain. Due to the 
nature of (I), particles within any linite computational domain interact with particles 
outside the computational domain. Hence, as more particles form outside the computa- 
tional domain, unavoidable errors are introduced into the distribution within the 
computational domain. Therefore, all mechanisms which form particles rapidly 
at the upper end of the size spectrum can lead to errors within the computational 

*. 
0 1 2 3 

ii 
FIG. 2. Particle size spectra. BE. = /3,, and 7 = N&,f. 
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domain. For the cases given in Table III the analytical expressions for M,, and M1 are 
given in Table IV. Table V lists the finite domain errors for cases 1 to 5. 

4.2. Numerical Results 

The numerical and exact results for case 1 are shown in Fig. 1. Using equally 
spaced elements in 4, (7) was solved numerically by both methods of Section 3. 
Excellent agreement between the numerical and exact solutions was obtained. From 
Table V we see that for the times considered in Fig. 1 the finite domain errors are 
negligible. In fact, up to T = 10, no significant finite domain errors can be anticipated. 

In order to demonstrate both the accuracy of both techniques for long dimension- 
less times and the effect of the finite domain error, case 1 was solved to 7 = 20. For 
the same domain as that in Fig. 1 Table V indicates that this domain will lead to a 
substantial tinite domain error. By multiplying the distribution by (T + 2)*/4, so as 
to emphasize the long-time behavior of the solution, Fig. 2 shows the numerical 

0 1 2 3 4 

D 
Fro. 3. Particle size spectra. pv = &, and I = N&t. 
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solution for & = 3.0. At long times the numerical solution lies above the exact 
solution since the numerical solution does not account for collisions between particles 
inside the domain [a,, %,I with those larger than B, . By increasing the computa- 
tional domain, the finite domain errors are reduced, and hence an accurate solution 
can be obtained. From Table V for case 2 we see that if i& is extended to 4.0 the kite 
domain errors are negligible for T < 20. As expected, Fig. 3 shows the numerical 
solution in excellent agreement with the exact solution when B, = 4.0. 

Figure 4 shows exact and numerical solutions for case 3. Consistent with Table V, 
we see that as T increases the deviation between the two solutions increases. The finite 
domain error is considerably more serious in case 3 than in case 1 because in case 3, 
/IO increases as the size of either particle increases, whereas in case 1, &, is constant. 
Consequently, the shift of the spectrum to larger particle sizes is more rapid in case 3 
at comparable values of the dimensionless time T. At short times, T < 1, the numerical 

1.5 

FIG. 4. Particle size spectra. &. = BI(u + 6) and 7 = N,BIQJ. 
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and exact solutions are very close. For longer times the numerical solution lies above 
the exact solution as in Fig. 2 for case 1. We can of course reduce the error by extend- 
ing the computational domain. However, as mentioned previously, in most particulate 
systems removal mechanisms are present. Therefore, in order to study the effect of 
removal on the finite domain error in case 4 we consider /Iv = pl(u + 6), S, = 
-Rgv(v, t). From Table V we see a substantial decrease in the finite domain error 
with the addition of a first-order removal mechanism. Since there are fewer particles 
greater than iJ, in case 4 as compared to case 3, the effect of coagulation of particles 
within the domain with particles outside the domain is negligible. Hence, Fig. 5 shows 
excellent agreement between the exact and numerical solutions. 

Case 5 includes both coagulation and particle growth. Particle growth does not 
change the total number of particles; however, since only a fkrite domain is used in 
the numerical solution, particles will be artificially lost when they grow beyond the 
computational domain. From Table V we see that even greater finite domain errors 

1.5 

FIG. 5. Particle size spectra. fiv = PI@ + e), S, = --Ron&, t), 7 = h’o&,t, and 0 = R,/j&N,v, = 1. 
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in M,,(t) exist for this case than for case 1. We see that particle growth is responsible 
for the additional error. Since the growth is independent of the distribution at any 
point in the domain, even for an infinite domain, the finite-domain errors shown in 
Table V do not lead to significant errors in the numerical solution. Thus, even though 
a substantial number of particles has been excluded, excellent agreement between the 
numerical and analytical solutions is still obtained, as shown in Fig. 6. 

In case 6, ,& = B0 and S, = (S&J*) exp(-v/v*) - Rflu, where Y* is a measure 
of the range of particle volumes over which particles are being generated. For initial 
distribution (18) only an asymptotic solution for the large particle size end of the 
spectrum is available [5]. Since the exact solution is not available, only the total 
number and volume of particles can be calculated for an infinite domain. Integratmg 
(1) over u from 0 to co leads to the following equation for N(t), the ratio of the number 
of particles present at time t to the initial number of particles, 

dN/dr = -&N2- eN+Q (21) 

0 1 2 ‘3 
D 

FIG. 6. Particle size spectra. /?* = PO , Z, = OV, 7 = N&t, and fl = 0/N~j3, = 1. 
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l 0.; 

q 0.25 
+ 1.0 
x 2.0 

I 
0 

5 

x 

I? 

4 

3 

2 

1 

0 
0 1 2 

D 
FIG. 7. Particle size spectra. j$, = ,f$ , S, = S,/v* exp(-v/v*) - R&v, t), 7 = N&g, l? = 

R,Ij,N, = 1, Q = SO/fiONOs = 1, and A = v*[v, = 0.01. (Computations were carried out on D = 
[O.OOl, 3.01. Only the region D = [O.OOl, 2.01 is shown.) 

where 

N(t) = $ Jam n,(u, t) dv. (22) 

Similarly, the ratio V of the total volume of particles at any time t to the initial 
volume of particles is described by 

where A = v*/vo and 

dV/dr = -t’V + Ai (23) 

V(t) = 1 !a un,(v, t) do. 
Nova 0 (24) 
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Solving (21) and (23) yields 

373 

N(t) = 
rl--r%(*jexp( (rz2r1)+ j 

1 - (+-jexp( (r2;rJ+ j 

and 

V(t) = ( .e -eA” > exp(-07) + q 

(25) 

where rl = 4 + (e2 + 252)lj2 and r2 = -4 - (e2 + 2Q)1/2. 
The numerical and asymptotic analytical solutions are shown in Fig. 7 for d = 0.01, 

0 = 1.0, and Q = 1.0. In this case only, equally spaced elements in w, not B, were 
used because of the large number of particles generated in the small size range. A 
reason for the deviation in this range is because the asymptotic solution does not 
hold. N(t) and V(t) were computed from (25) and (26) and compared to the numerically 
computed values of N and I? The results are given in Table VI, where we see that, 
for the time considered, there is little finite domain error. 

TABLE VI 

Finite Domain Error for Case 6; j3. = PO, 

S,, = (So/v*) evjO* - R~I,,~ 

0.25 1.00 0.994 

1.0 1.00 0.992 

2.0 1.00 0.986 

4 52 = So/No4j3,, = 1.0, 9 = Ro/N&, = 1.0, and A = v*/v,, = 0.01. 

b T = N,,,Q. 

5. SUMMARY 

The principal alternatives to the method of weighted residuals for the solution of (1) 
either rely on assumptions on the expected shape of the solution [l 1, 151 or employ 
discretization of particle sixes [6, S-10]. The former class of methods, while 
computationally attractive, requires some prior knowledge of the solution. For a 
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discrete or finite-difference solution to account for all possible particle sizes, the mesh 
spacing must, in principle, be equal to the size of the smallest particle. The number of 
particle sizes needed to represent exactly a distribution between particle volumes v, 
and z+, is U&J, ; for atmospheric aerosols this ratio can be lOlo, Clearly, for a discrete 
solution to be computationally feasible the mesh spacing must be several orders of 
magnitude larger than the size of the smallest particle. In such a case substantial 
errors may be committed when representing the integral terms in (1). For problems of 
the type considered here methods of weighted residuals, such as collocation on finite 
elements, appear to be more attractive and efficient than finite-difference methods. 

Although no definite conclusions can be made on which finite element technique 
is best for all cases, the advantages and disadvantages of each technique should be 
pointed out. For Z collocation points cubic splines requires the solution of a (a - 2)- 
dimensional tridiagonal linear system, while orthogonal collocation on finite elements 
requires the solution to a linear system with a banded matrix of bandwith 7. However 
to evaluate the distribution, orthongonal collocation on finite elements is considerable 
easier. The major difference between the two techniques is the location of the colloca- 
tion points relative to the grid points. Orthogonal collocation on finite elements has 
the flexibility of locating the collocation points anywhere within the element (although 
the roots of an orthogonal polynomial are considered optimal). In cubic splines the 
collocation points are fixed at the grid points, but twice as many elements can be 
used for the same number of collocation points and the fit has continuous second 
derivatives. 

The major source of error in solving (1) by collocation on finite elements is the use 
of a finite computational domain. The cases considered here represent a severe test 
of the so-called finite domain error because the distributions for those cases for which 
analytical solutions can be obtained tend to have uncharacteristically large numbers 
of particles at the upper end of the size spectrum when compared with most actual 
particulate systems. For most actual particulate systems the range of particle sizes is 
finite, and the finite domain error can be expected to be considerably less than that for 
cases such as those considered here. Hence time integrations can be performed for a 
longer time span. 
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